
ML Training Under Tight Budget Constraints
With Data Pruning and Model Scaling

December 8, 2024

Jiwon Chang Ethan Chen

Abstract
As deep learning models demand increasingly
large datasets, the sheer size of training data
has become a significant bottleneck for train�
ing state�of�the�art models. Consequently, con�
siderable attention has been directed toward
data�efficient machine learning, which seeks to
accelerate model training by selectively remov�
ing data points that contribute the least to
final model performance. However, prior works
assumed that the model architecture is fixed,
focusing solely on the impact of data pruning
on model performance. Through a grid search
experiment on a scalable family of ResNet mod�
els, we empirically explore the impact of model
size, batch size, and data pruning on training
latency and test set accuracy. We show that the
optimal training strategy under a strict total
latency constraint involves jointly pruning data
and scaling down the model.

1 Introduction
Deep learning (DL) models have become a
ubiquitous technology. Stakeholders often wish
to train and deploy their own models for reasons
such as task specialization, data security, and
privacy. However, model performance improves
logarithmically with dataset size, creating a
demand for exponentially larger training sets
[16]. This imposes an insurmountable computa�
tional burden for all but the largest developers,
thereby hindering the democratization of con�
temporary DL techniques.

A promising solution to this challenge is data
pruning, which involves removing data points
that do not significantly contribute to the final

model accuracy. Data pruning techniques have
shown the ability to train both computer vision
models and large language models (LLMs) [12,
13].

The goal of data pruning methods is to ap�
proximate the gradient of model parameters
with respect to the ground truth data distrib�
ution using a subset of the training data [11].
This must be achieved without introducing
more overhead than is saved through reduced
data movement and computation costs during
forward and backward passes. Current SOTA
pruning methods focus on removing data points
associated with small losses, as these corre�
spond to small gradient norms and therefore
have minimal impact on the model’s decision
boundaries [13, 15].

To the best of our knowledge, existing data
pruning techniques assume a fixed model archi�
tecture and aim solely to refine the data pruning
algorithm [1, 9, 11–15]. However, empirical scal�
ing laws indicate that dataset size and model
size should scale proportionally to minimize
losses effectively, ensuring neither becomes a
bottleneck [16].

In this work, we explore how to achieve a
Pareto�optimal training strategy by combining
data pruning and model scaling. Our findings
demonstrate that under strict training bud�
get constraints, the highest model accuracy
is achieved by increasing the degree of data
pruning while proportionally scaling down the
model’s width and depth.

1



2 Prior Work
We first conduct a comprehensive literature re�
view of existing work on data�efficient machine
learning (ML) and its limitations.

Low-loss pruning. The recent wave of data
pruning research began with Selective Backprop
[6]. This method proposed that data points
with low loss are relatively unimportant for
training. To identify such points, the technique
performed an additional forward pass in each
epoch, followed by a full sort, to skip backprop�
agation and gradient updates for a subset of
low�loss data points.

Subsequent works in this vein have proposed
pruning based on metrics such as low scalar loss,
small normed loss vectors, or small gradient
norms [9, 13–15]. Pruning schedules may either
be static (performed once early in training)
[13] or dynamic (adjusted iteratively through�
out training) [14, 15]. However, the additional
forward pass per epoch introduces significant
computational overhead [6]. To mitigate this,
researchers have explored leveraging stale loss
information, with strategies such as:

• Refreshing stale loss metrics periodically [6].
• Using random sampling to ensure all data

points are periodically revisited [9, 14].
• Applying online learning algorithms for real�

time updates [15].

Explainable Data Difficulty. In the explain�
able AI (XAI) literature, several methods quan�
tify the “difficulty” of a data point for a given
model and task. Empirical studies reveal strong
correlations between various measures of “easy”
data points across modalities and architectures
[8], including:

• Low loss [8].
• Small gradient norms [13].
• Easy to learn and hard to forget [17].
• Consistently learned early in training and in

early model layers [2].
• Consensus among ensemble predictions [3].

• Contribution to hold�out performance [3].

These findings suggest that pruning low�loss
data points is a fundamentally sound approach,
as the “difficulty” of a data point during
training is a consistently measurable one�di�
mensional concept [8].

High-loss pruning. Recently, researchers have
identified benefits to pruning data points with
abnormally high losses [9]. The intuition is that
such points may be mislabeled, noisy, or outliers
that do not significantly contribute to general�
ization [9]. Removing these points can enhance
test�time performance by reducing overfitting
to noisy or irrelevant data [9].

Coreset Methods. Another line of work fo�
cuses on approximating the total gradient using
a small subset of data points by solving combi�
natorial optimization problems [11, 12]. These
methods aim to provably select a subset that
closely matches the gradient of the full dataset,
providing a more principled alternative to low�
loss pruning. While these approaches have
achieved SOTA performance in some tasks,
they come with significant computational over�
head [11]. Specifically, they require access to
gradient information and involve solving sub�
modular optimization problems, which typically
run in 𝑂(𝑛2) time [10].

3 Problem Definition
Suppose that we are given a prediction task,
a family of models that share the same archi�
tecture, and a dataset with predefined train/
test splits. Additionally, we are constrained by a
strict total training latency budget. Our objec�
tive is to select a specific model from the model
family and determine a pruning schedule that
maximizes test set performance while adhering
to the training time constraint.

For simplicity, we focus on image classification
tasks. We draw our models from a family
of ResNet models [5], where the width and

2



depth of each basic block are scaled in tandem,
similar to the scaling strategy employed in Effi�
cientNet [7]. We constrain the set of possible
data pruning strategies to a method similar to
Stale Selective Backprop [6], as described in
Section 4.1. Additionally, we include minibatch
size as a tunable parameter in the optimization
problem.

Our general problem definition can be divided
into two sub�problems:

1. Understanding the phenomenon: Conduct�
ing a scientific experiment to explore the
relationships between the independent and
dependent variables.

2. Auto�tuning optimization: Developing a
method to predict the optimal model and
pruning parameters for a given task without
incurring significant overhead.

This report focuses on the first sub�problem:
understanding the relationships through empir�
ical experimentation. We leave the second sub�
problem for future work.

4 Implementation
4.1 Pruning Algorithm
Our method. Our data pruning algorithm is
an adaptation of Stale Selective Backprop [6],
chosen for its low overhead and simplicity after
evaluating various alternatives.

Similar to Stale Selective Backprop, we main�
tain a list of the most recently observed loss
values for every data point in the training set.
During each epoch, we subsample a uniformly
random subset of the dataset. This subset is
then sorted to approximate the threshold for
the 𝑝th quantile, where 𝑝 ∈ [0, 1]. We prune all
data points whose last observed loss is below
this threshold. In expectation, this process
prunes 𝑁𝑝 data points per epoch from a dataset
of size 𝑁 . However, this method does not guar�
antee an unbiased estimate of the true threshold
due to the stale nature of the loss values.

Over time, our method may become less effec�
tive at pruning “easy” data points as loss
information becomes increasingly stale. Prior
research suggests that this degradation can
negatively affect model performance, as the
difficulty of data points evolves during training
[8, 15]. While some works attempt to address
this issue using active learning [15], evidence
suggests that active learning methods are not
always effective [14]. Consequently, we adopt a
simpler approach: every 𝑘 epoch, we train the
model on the entire dataset to refresh all stale
loss information [6].

4.2 Implementation Details
We implement the pruning logic using two
custom Python classes: PruningDataset and
ScalablePrunableResNet.

• PruningDataset: This is a PyTorch Dataset
wrapper around an underlying Dataset. It
manages the logic for selecting data points to
prune and maintaining consistent mappings
between external and internal indices. It re�
turns triples of (𝑥, 𝑦, idx) for each data point,
instead of the standard (𝑥, 𝑦) tuple, requiring
modifications to the downstream model to
accommodate this change.

• ScalablePrunableResNet: This class inherits
from a ScalableResNet. In addition to the
standard ResNet functionality and model
scaling logic, it includes a hook that updates
the PruningDataset’s loss information at the
end of each epoch.

4.3 Model Scaling
We implement model scaling on ResNet [5] to
balance training latency and accuracy. Our im�
plementation involves a custom ResNet model
that uniformly scales the width and depth of its
basic blocks, following a methodology similar to
EfficientNet [7]. We keep the total number of
basic blocks and input resolution constant for
simplicity.

3



Figure 1: Full results of the experiment. The objectives (total training time, test set accuracy)
form the 𝑥, 𝑦 axes. The pruning rate is represented through color. The model scaling factor is
represented through marker shape, with larger models having more vertices in the marker. Batch

size is annotated near each scatter point.

5 Experiment
We conduct a grid search experiment to study
the effect of model scaling, data pruning, and
minibatch size on total training latency and
downstream task accuracy.

Parameters. The independent variables have
the following possible values:

• Model scaling factor: 1.0, 1.1, 1.2, 1.3. 1.4
• Target pruning rate: 0.0, 0.1, 0.2, 0.3
• Batch sizes: 1400, 1600, 1800, 2000

We choose model scaling factors that do not
cause issues with large batch sizes, which we
found to significantly improve latency. The
pruning rate scales up to 0.3 since prior work

suggested that pruning rates exceeding it tend
to significantly degrade model performance.

We measure the following dependent variables:
• Total training latency, which includes data

pruning overhead but does not include vali�
dation time.

• Test set task accuracy, which measures the %
of images classified correctly in CIFAR100.

We keep the following factors constant:
• Each model is trained with the default learn�

ing rate of 1e�3.
• The optimizer is Adam [4] with default para�

meters in all configurations.
• Hardware utilization (CPU, GPU, RAM) by

other processes is kept to a minimum.

4



Figure 3: Scaling factor 1.0. Figure 4: Scaling factor 1.1.

Figure 5: Scaling factor 1.2. Figure 6: Scaling factor 1.3

Figure 7: Scaing factor 1.4.
Figure 8: Scaling factor vs training time.

Figure 2: Top left to bottom left: Full results of the experiment split into subfigures based on the
model scaling factor. Bottom right: Impact of scaling factor and pruning factor ion training time.

Hardware. The experiments were run on a
machine with the following hardware:
• GPU: RTX 2080 w/ 8GB vRAM

• CPU: Intel(R) Xeon(R) Silver 4114 CPU
• RAM: 64 GB
• OS: Ubuntu 22.04

5



• CUDA: 12.2

6 Results
Figure 1 shows the full result of the experiment,
with the two objectives plotted in the 𝑥 and 𝑦
axes, and the independent variables displayed
using the color bar, marker shape, and annota�
tions. The Pareto�optimal frontier of the two
objectives is shown as a red line.

Figure 1 demonstrates that the Pareto�optimal
frontier consists of configurations with a wide
range of scaling factors and pruning rates. At
the tightest training time budgets, the optimal
configurations involve a small scaling factor
(1.0) and a pruning rate of 0.2 to 0.3. The
optimal configuration for a higher training time
budget consists of the highest scaling factor
(1.4) and low pruning rates of 0.0 to 0.1.

Figure 3 to Figure 7 shows the same data, split
into different scaling factors. With the excep�
tion of scaling factor 1.1, the data demonstrates
that the Pareto�optimal frontier for higher time
budgets consists of larger scaling factors.

Figure 8 more clearly demonstrates the abnor�
malities in the relationship between the scaling
factor and total training time. The figure also
demonstrates a general positive correlation be�
tween scaling factor and training time, as well
as a consistent correlation between pruning rate
and training time.

Figure 9: Impact of scaling factor and pruning
rate on model accuracy.

Figure 9 displays the impact of scaling factor
and pruning rate on model accuracy. While
more data is required to accurately interpolate
between the available data points, there is
clearly a smooth and consistent correlation be�
tween the two independent variables on down�
stream model performance.

7 Discussion
On the 1.1 Scaling Factor Slowdown.
There is an unusual slow�down in total training
time for models that correspond to a 1.1 scal�
ing factor. To diagnose this issue, we utilized
Pytorch Profiler. We found that the offending
models spent a considerable amount of CUDA
time in the backpropagation phase of training.
The 1.1 scaling factor model for a batch size
of 1500 and pruning rate of 0.3 spent a total
of 49.7 seconds computing gradients for convo�
lution operations. In comparison, the 1.2 scaling
factor model run with an identical batch size
and pruning rate spent a total of 5.34 seconds
for the same computations, despite being a
larger model. The difference in backpropagation
time stems from a greatly increased number
of matrix multiplication kernels launched by
the 1.1 scaling factor model during the back�
ward propagation. volta_gcgemm_32x32_tn was
launched over 400,000 times during backprop�
agation on the 1.1 model. In comparison, the
same kernel was launched only 816 times on
the 1.2 model. We could not source down the
exact cause of the excessive number of kernel
launches. We hypothesize that the dimensions
of each convolution layer in the basic blocks do
not align well.

Negative result on runtime & accuracy
modeling. We had two main goals. The first
goal was to model the multi�objective optimiza�
tion problem (w.r.t. model performance and
training latency) as a function of model parame�
ters and data pruning parameters. The second
goal was to use the model to solve an optimiza�

6



tion problem. The optimizer would recommend,
for a given architecture and dataset, the opti�
mal configuration for a given training time
constraint. We failed to regress any model that
captures an acceptable amount of information,
so we omit the second half of our original goal
in this report.

8 Conclusion
We investigate the Pareto frontier of the follow�
ing multi�objective optimization problem: How
can we achieve the optimal tradeoff between to�
tal training time latency and downstream task
accuracy in ML models by adjusting the model
size and data pruning rate? Through a grid
search experiment, we demonstrate that the
Pareo�optimal frontier involves simultaneously
scaling down the model size and data pruning
rate. This ensures that model parameters and
dataset size are not the bottleneck for the other.

9 Artifact Availability
The artifact has been made publically available
on GitHub through the following link:

https://github.com/
Myocardinal/DataPruningExperiment

Bibliography
[1] Zachary Ankner, Cody Blakeney, Kartik

Sreenivasan, Max Marion, Matthew L
Leavitt, and Mansheej Paul. 2024. Per�
plexed by Perplexity: Perplexity�Based
Data Pruning With Small Reference
Models. arXiv preprint arXiv:2405.20541
(2024).

[2] Robert Baldock, Hartmut Maennel, and
Behnam Neyshabur. 2021. Deep learning
through the lens of example difficulty. Ad�
vances in Neural Information Processing
Systems 34, (2021), 10876–10889.

[3] Nicholas Carlini, Ulfar Erlingsson, and
Nicolas Papernot. 2019. Distribution den�

sity, tails, and outliers in machine learning:
Metrics and applications. arXiv preprint
arXiv:1910.13427 (2019).

[4] P Kingma Diederik. 2014. Adam: A
method for stochastic optimization. (No
Title) (2014).

[5] Kaiming He, Xiangyu Zhang, Shaoqing
Ren, and Jian Sun. 2016. Deep residual
learning for image recognition. In Proceed�
ings of the IEEE conference on computer
vision and pattern recognition, 2016. 770–
778.

[6] Angela H Jiang, Daniel L�K Wong, Giulio
Zhou, David G Andersen, Jeffrey Dean,
Gregory R Ganger, Gauri Joshi, Michael
Kaminksy, Michael Kozuch, Zachary C
Lipton, and others. 2019. Accelerating
deep learning by focusing on the biggest
losers. arXiv preprint arXiv:1910.00762
(2019).

[7] Brett Koonce and Brett Koonce. 2021. Ef�
ficientNet. Convolutional neural networks
with swift for Tensorflow: image recog�
nition and dataset categorization (2021),
109–123.

[8] Devin Kwok, Nikhil Anand, Jonathan
Frankle, Gintare Karolina Dziugaite, and
David Rolnick. 2024. Dataset Difficulty
and the Role of Inductive Bias. arXiv
preprint arXiv:2401.01867 (2024).

[9] Sören Mindermann, Jan M Brauner,
Muhammed T Razzak, Mrinank Sharma,
Andreas Kirsch, Winnie Xu, Benedikt
Höltgen, Aidan N Gomez, Adrien Morisot,
Sebastian Farquhar, and others. 2022. Pri�
oritized training on points that are learn�
able, worth learning, and not yet learnt.
In International Conference on Machine
Learning, 2022. 15630–15649.

[10] Baharan Mirzasoleiman, Ashwinkumar
Badanidiyuru, Amin Karbasi, Jan Von�

7

https://github.com/Myocardinal/DataPruningExperiment
https://github.com/Myocardinal/DataPruningExperiment


drák, and Andreas Krause. 2015. Lazier
than lazy greedy. In Proceedings of the
AAAI Conference on Artificial Intelli�
gence, 2015.

[11] Baharan Mirzasoleiman, Jeff Bilmes, and
Jure Leskovec. 2020. Coresets for data�effi�
cient training of machine learning models.
In International Conference on Machine
Learning, 2020. 6950–6960.

[12] Dang Nguyen, Wenhan Yang, Rathul
Anand, Yu Yang, and Baharan
Mirzasoleiman. 2024. Mini�batch Core�
sets for Memory�efficient Training of
Large Language Models. arXiv preprint
arXiv:2407.19580 (2024).

[13] Mansheej Paul, Surya Ganguli, and
Gintare Karolina Dziugaite. 2021. Deep
learning on a data diet: Finding important
examples early in training. Advances in
neural information processing systems 34,
(2021), 20596–20607.

[14] Ziheng Qin, Kai Wang, Zangwei Zheng,
Jianyang Gu, Xiangyu Peng, Zhaopan Xu,
Daquan Zhou, Lei Shang, Baigui Sun, Xu�
ansong Xie, and others. 2023. Infobatch:
Lossless training speed up by unbiased
dynamic data pruning. arXiv preprint
arXiv:2303.04947 (2023).

[15] Ravi S Raju, Kyle Daruwalla, and Mikko
Lipasti. 2021. Accelerating deep learning
with dynamic data pruning. arXiv preprint
arXiv:2111.12621 (2021).

[16] Ben Sorscher, Robert Geirhos, Shashank
Shekhar, Surya Ganguli, and Ari Morcos.
2022. Beyond neural scaling laws: beating
power law scaling via data pruning. Ad�
vances in Neural Information Processing
Systems 35, (2022), 19523–19536.

[17] Mariya Toneva, Alessandro Sordoni, Remi
Tachet des Combes, Adam Trischler,
Yoshua Bengio, and Geoffrey J Gordon.

2018. An empirical study of example
forgetting during deep neural network
learning. arXiv preprint arXiv:1812.05159
(2018).

8


	Introduction
	Prior Work
	Problem Definition
	Implementation
	Pruning Algorithm
	Implementation Details
	Model Scaling

	Experiment
	Results
	Discussion
	Conclusion
	Artifact Availability
	Bibliography

